Robust Firewalls with OpenBSD and PF

— ~r" SECURED *
G s INTRANET

Overview

o Design Philosophy (and what PF doesn’t do)

o The Basics
o Normalisation
o Filtering

o Translation
o Advanced Toolkits
c Denial of Service Mitigation

o Firewall Redundancy
o Load Balancing
o Comparison & Rant

Design Philosophy

o Free software
o Correct, readable code

o Secure, robust packet filtering
o Flexible but simple to use
o Good performance

What PF Doesn’t Do

Application filtering

o Two implementation options
o Simple but simplistic

>Trivial to defeat
> False positives

o Comprehensive but complex
> Complexity == security risk

>Too bloated for kernel
> Extremely difficult to do correctly

o Solution: Userland proxy

c No kernel bloat
o Security risk of complex code can be contained

o priviledge revocation/separation, chroot, etc.

What PF Doesn’t Do

User-level access control

o Like application filtering, this should be handled in userland
o e.g. authpf
>authentication and session timeout handled by ssh
>modifies ruleset or table

Normalization (scrub)

o Sanitizes packet content to remove ambiguity:
o |P fragment reassembly

o [P normalisation

o |[PID randomisation

o TCP normalisation

o |llegal flag combinations

o TCP options
c PAWS (Protect Against Wrapped Sequence Numbers)
o Enforce minimum TTL

Filtering

| Filterable Attributes

Source/destination address
Interface

Direction

Address family

Protocol
TOS
Fragments

IP options
Tagging

Route
ICMP code and type (ICMP)

User/group (TCP and UDP)

TCP flags (TCP)

Source OS (TCP)

Source/destination port (TCP and UDP)

Filtering

OS Fingerprints

o Source OS only

o Looks at initial TCP packet

o Based on pOf, by Icamtuf@coredump.cx

o Can filter by general OS or specific version/patchlevel

o Can be spoofed
o A policy tool, not a security tool

Filtering

Tagging

o Rules can apply a named tag to a packet
o Only one tag per packet

o Pass rules with tagging must be stateful
o Subsequent rules can match on that tag
o Bridge code can also tag packets

o Allows the separation of classification and policy

Filtering

| Stateful Rules

o States indexed in a red-black tree
o State searches are faster than rule lookup

o States increase security

o Can control who initiates a connection
o TCP segments must be within window

o reset must be on edge of window

Filtering

| Tables

Tables provide a mechanism for increasing the performance
and flexibility of rules with large numbers of source or
destination addresses.

o Implemented as radix tree

o Very fast lookups
o Bytes/packet counters for each table entry
o Can be loaded multiple ways

o |n pf.conf

o From a file
o On the command line with pfctl

Filtering

IAnchors

An anchor Is a container that can hold rules,
address tables, and other anchors.

o Placeholder for rules to be loaded later
o Changing anchor does not change main ruleset

o Can be nested

o Used by tools such as authpf to dynamically modify the ruleset

Translation

o nat - source address translation
ordr - destination address translation
o binat - bidirectional address translation

Solving real world problems

Denial of Service Attack Mitigation

o Caveat: very difficult to combat bandwidth-based DDoS

o Techniques include:
° SYNProxy
o Adaptive Timeouts
o max-src-states and max-src-nodes

o max-src-conn and max-src-conn-rate
o [nput queue congestion handling

o ALTQ

DoS Mitigation

SYyNnproxy

o pf completes the 3 way handshake

o Does 3 way handshake with destination

o Remaining traffic is a normal stateful connection
o (with modulated sequence numbers)

DoS Mitigation

Adaptive Timeouts

o Scales timeouts as the total number of states increases
o Unused states die more quickly

DoS Mitigation

max-src-states and max-src-nodes

o Works with 'source-tracking’
o states tracked by source IP
o max-src-states limits states per source
o max-src-nodes limits number of sources

DoS Mitigation
max-src-conn and max-src-conn-rate

The 3-way handshake ensures the source is not spoofed...
so we introduce per-source limits on TCP connections

completing the 3-way handshake

omax- src-conn 10
c Number of open connections

omax- src-conn-rate 10/ 60
o Rate of new connections (connections over time)

o Estimate calculated on a moving average
o’ overl oad <bad guys> flush gl obal’
o Optional automatic response to the limit

o Add the offending address to a table
o Kill existing connections from the source

DoS Mitigation

Input queue congestion handling

o Under some dDoS attacks CPU is overloaded
o Input queue fills up

o Machine becomes unresponsive

o When input queue is full stop evaluating ruleset
o stateful packets are passed
o stateless packets dropped unconditionally

o Packets would have gotten dropped anyways
o Machine stays responsive

DoS Mitigation

ALTQ

o Bandwidth shaping

o Can filter traffic based on filter attributes
o Works only with stateful rules

o Multiple queueing disciplines supported

o Most effective in front of bandwidth bottleneck
o eg at upstream ISP(s)

DoS Mitigation

Combination of Techniques

o Individual features become powerful weapons when used
together:

o SYyNProxy + max-states + adaptive timeouts
° SyNproxy + max-src-conn-rate
o ALTQ + OS Fingerprinting

Firewall Redundancy

@\3

FRIMARY FIREWALL BACKLF FIREWALL

Vol S

Internal Network

Firewall Redundancy

pfsync

The pfsync protocol synchronises state information between
multiple firewalls.

o Each firewall sends out state changes via multicast

o Best effort - Systems tend towards complete synchronisation
o Some mechanisms to limit packets (and thus interrupts)

o pfsync is architecture independant

Firewall Redundancy

CARP

o Similar in some ways to VRRP

o Multicast Advertisement
o Address moved by moving a virtual MAC address

o Multiple virtual addresses on same network

o Variable advertisement interval
o most frequent advertiser becomes master

o Advertisement protected by a SHA1 HMAC

o Addresses not in Advertisement, but in HMAC
o Supports layer 2 load balancing (ARP based)

o [Pv4 and IPv6 support

Firewall Redundancy

pfsync and CARP integration

o pfsync requests a bulk update when system comes up
o Prevents CARP preemption until bulk update complete

Firewall Redundancy

Example

Intamat

AT-—o~

Hit

%
___________________ H'_xll
carpd: 10.0.0.4 |
______________________________ il__]___________
playno
SOEHRIS NET4501 SOEKRS F-EI'-I-'E':HI
I
"""""" carpi: o2 6801
35 ___________________________}r__' ____________
a
il |
Z 1;
-—"’J
T |
f

Firewall Redundancy

Timeline

MASTER

CARP advertizemeant g
CARP adveriizameart ;

client traffic }ETE.TE- 1 creation }_

clist traffic state 1 i
CARP advertizemant

cllagrd fraffic slata 1 5]

MASTER
FOWEH
FAILLIBE

MASTER radurns
requsst Dok update }

playne prevamnts carp from prasmpbng
urtlil the bulk update s compiated,

CARP advariisemani

clierd !rﬂlﬂﬂ; slate 1 updale

>

BACKUP

CARP sdvertisement 9
Message
affic

TW—;
\

somea packets may be lost
bafore the backup takes owver
approximataly 3 seconds in

cliant traff
a slandard configur ation) #——rﬂ-ﬁ
‘ CARP advarisamant

CARF advartisamant
giate 2 crestion

i CARP advarfizemant

: CARP agvartisemeant

start bulk updsta

chant treffic

risfular state sychranisation
state 1 updals consinues during the bulk update
state 1 updata chent treffic

CARP advertisament
state 2 updata
end bulk update

i CARP advartizamant

Load Balancing

rdr / nat with multiple addresses

o Several address selection options

o pitmask

o source-hash

orandom

o round-robin
o sticky-address

o Can be used with 'random’ and 'round-robin’
o Ties the source address to the translation address

Load Balancing

CARP

o Can also provide failover to hosts as well as routers
o’arpbalance’ balances based on arp requests

o Multiple carp groups (one per host)

o Group selected based on ARP request source

o Master of that group responds with ARP

o Only works on local segment

Load Balancing

Example

Sereer 1
capd master

....... -

Senver 3
CRMNE master
CRipd master

carpl 10004

o carpl: 10005
carp? 10006

carp: 1582 168 0 & w arpbalanoe i

B L = ¥
) i

e ~

Comparison

o Commercial
o Checkpoint

o Pix

o Open Source
o |pf
o |ptables

Comparison

Feature Comparison

o All run on pc-style hardware

o Including "hardware firewalls" like Pix and Nokia Checkpoint.
o pix and checkpoint

o Less flexible at the packet level

c Do more at the application level

o Centralised administration tools available
o Unreliable failover
o Poor logging formats

o Licensing hassles
o ptables and ipfilter
o Rulesets more complicated - this has security impacts!
o Some application level filtering - history of security holes

Comparison

Support and Training

o Training

o Firewall administration is non-trivial
o Training Is required regardless of the pretty GUI

o Network fundamentals more important than product specifics
c PF does not obfuscate the network fundamentals

o Support
o Vendor support for commercial products is often weak
o 3rd party support for PF available
>The difference: you have a choice

o Support often means "someone to blame" if something goes
wrong

> Read the license - you can’t blame the vendor

Comparison

Cost Comparison

Approximate cost of a failover configuration capable of 1 gigabit/s:

o Nokia Checkpoint EUR 35,000
o Cisco Pix (no 'fail-back’) EUR 40,000
o "Support" and software updates extra!

o OpenBSD & PF (Hardware & CDs) EUR 6,000

Conclusion

o PF does one thing - packet filtering - and does it right:

o Secure

o Maintainable
o Flexible

o Easy to use

o Fast

o And as an added bonus:
o Cost competetive

More information

0 OpenBSD manual pages
o PF User’s Guide: http://www.openbsd.org/faq/pf/

o Building Firewalls with OpenBSD and PF [2nd edition] by Jacek
Artymiak

o 3rd editon covering OpenBSD 3.7 coming soon, from
O’'Reilly

