
 Robust Firewalls with OpenBSD and PF

 Ryan McBride <mcbride@openbsd.org>

 Overview

 Design Philosophy (and what PF doesn’t do)
 The Basics
 Normalisation
 Filtering
 Translation
 Advanced Toolkits
 Denial of Service Mitigation
 Firewall Redundancy
 Load Balancing
 Comparison & Rant

 Design Philosophy

 Free software
 Correct, readable code
 Secure, robust packet filtering
 Flexible but simple to use
 Good performance

What PF Doesn’t Do

 Application filtering

 Two implementation options
 Simple but simplistic
 Trivial to defeat
 False positives
 Comprehensive but complex
 Complexity == security risk
 Too bloated for kernel
 Extremely difficult to do correctly

 Solution: Userland proxy
 No kernel bloat
 Security risk of complex code can be contained
 priviledge revocation/separation, chroot, etc.

What PF Doesn’t Do

 User-level access control

 Like application filtering, this should be handled in userland
 e.g. authpf
 authentication and session timeout handled by ssh
 modifies ruleset or table

 Normalization (scrub)

 Sanitizes packet content to remove ambiguity:
 IP fragment reassembly
 IP normalisation
 IPID randomisation
 TCP normalisation
 Illegal flag combinations
 TCP options
 PAWS (Protect Against Wrapped Sequence Numbers)
 Enforce minimum TTL

Filtering

 Filterable Attributes

 Source/destination address
 Interface
 Direction
 Address family
 Protocol
 TOS
 Fragments
 IP options
 Tagging
 Route
 ICMP code and type (ICMP)
 User/group (TCP and UDP)
 TCP flags (TCP)
 Source OS (TCP)
 Source/destination port (TCP and UDP)

Filtering

 OS Fingerprints

 Source OS only
 Looks at initial TCP packet
 Based on p0f, by lcamtuf@coredump.cx
 Can filter by general OS or specific version/patchlevel

 Can be spoofed
 A policy tool, not a security tool

Filtering

 Tagging

 Rules can apply a named tag to a packet
 Only one tag per packet
 Pass rules with tagging must be stateful
 Subsequent rules can match on that tag
 Bridge code can also tag packets

 Allows the separation of classification and policy

Filtering

 Stateful Rules

 States indexed in a red-black tree
 State searches are faster than rule lookup
 States increase security
 Can control who initiates a connection
 TCP segments must be within window
 reset must be on edge of window

Filtering

 Tables

 Tables provide a mechanism for increasing the performance
 and flexibility of rules with large numbers of source or
 destination addresses.

 Implemented as radix tree
 Very fast lookups
 Bytes/packet counters for each table entry
 Can be loaded multiple ways
 In pf.conf
 From a file
 On the command line with pfctl

Filtering

 Anchors

 An anchor is a container that can hold rules,
 address tables, and other anchors.

 Placeholder for rules to be loaded later
 Changing anchor does not change main ruleset
 Can be nested

 Used by tools such as authpf to dynamically modify the ruleset

 Translation

 nat - source address translation
 rdr - destination address translation
 binat - bidirectional address translation

 Solving real world problems

 Denial of Service Attack Mitigation

 Caveat: very difficult to combat bandwidth-based DDoS

 Techniques include:
 synproxy
 Adaptive Timeouts
 max-src-states and max-src-nodes
 max-src-conn and max-src-conn-rate
 Input queue congestion handling
 ALTQ

DoS Mitigation

 synproxy

 pf completes the 3 way handshake
 Does 3 way handshake with destination
 Remaining traffic is a normal stateful connection
 (with modulated sequence numbers)

DoS Mitigation

 Adaptive Timeouts

 Scales timeouts as the total number of states increases
 Unused states die more quickly

DoS Mitigation

 max-src-states and max-src-nodes

 Works with ’source-tracking’
 states tracked by source IP
 max-src-states limits states per source
 max-src-nodes limits number of sources

DoS Mitigation

 max-src-conn and max-src-conn-rate

 The 3-way handshake ensures the source is not spoofed...
 so we introduce per-source limits on TCP connections
 completing the 3-way handshake
 max-src-conn 10
 Number of open connections
 max-src-conn-rate 10/60
 Rate of new connections (connections over time)
 Estimate calculated on a moving average
 ’overload <bad_guys> flush global’

 Optional automatic response to the limit
 Add the offending address to a table
 Kill existing connections from the source

DoS Mitigation

 Input queue congestion handling

 Under some dDoS attacks CPU is overloaded
 Input queue fills up
 Machine becomes unresponsive
 When input queue is full stop evaluating ruleset
 stateful packets are passed
 stateless packets dropped unconditionally

 Packets would have gotten dropped anyways
 Machine stays responsive

DoS Mitigation

 ALTQ

 Bandwidth shaping
 Can filter traffic based on filter attributes
 Works only with stateful rules
 Multiple queueing disciplines supported

 Most effective in front of bandwidth bottleneck
 eg at upstream ISP(s)

DoS Mitigation

 Combination of Techniques

 Individual features become powerful weapons when used
together:

 synproxy + max-states + adaptive timeouts
 synproxy + max-src-conn-rate
 ALTQ + OS Fingerprinting

 Firewall Redundancy

Firewall Redundancy

 pfsync

 The pfsync protocol synchronises state information between
 multiple firewalls.

 Each firewall sends out state changes via multicast
 Best effort - Systems tend towards complete synchronisation
 Some mechanisms to limit packets (and thus interrupts)
 pfsync is architecture independant

Firewall Redundancy

 CARP

 Similar in some ways to VRRP
 Multicast Advertisement
 Address moved by moving a virtual MAC address
 Multiple virtual addresses on same network
 Variable advertisement interval
 most frequent advertiser becomes master
 Advertisement protected by a SHA1 HMAC
 Addresses not in Advertisement, but in HMAC
 Supports layer 2 load balancing (ARP based)
 IPv4 and IPv6 support

Firewall Redundancy

 pfsync and CARP integration

 pfsync requests a bulk update when system comes up
 Prevents CARP preemption until bulk update complete

Firewall Redundancy

 Example

Firewall Redundancy

 Timeline

Load Balancing

 rdr / nat with multiple addresses

 Several address selection options
 bitmask
 source-hash
 random
 round-robin
 sticky-address
 Can be used with ’random’ and ’round-robin’
 Ties the source address to the translation address

Load Balancing

 CARP

 Can also provide failover to hosts as well as routers
 ’arpbalance’ balances based on arp requests
 Multiple carp groups (one per host)
 Group selected based on ARP request source
 Master of that group responds with ARP
 Only works on local segment

Load Balancing

 Example

 Comparison

 Commercial
 Checkpoint
 Pix
 Open Source
 ipf
 iptables

Comparison

 Feature Comparison

 All run on pc-style hardware
 including "hardware firewalls" like Pix and Nokia Checkpoint.
 pix and checkpoint
 Less flexible at the packet level
 Do more at the application level
 Centralised administration tools available
 Unreliable failover
 Poor logging formats
 Licensing hassles
 iptables and ipfilter
 Rulesets more complicated - this has security impacts!
 Some application level filtering - history of security holes

Comparison

 Support and Training

 Training
 Firewall administration is non-trivial
 Training is required regardless of the pretty GUI
 Network fundamentals more important than product specifics
 PF does not obfuscate the network fundamentals

 Support
 Vendor support for commercial products is often weak
 3rd party support for PF available
 The difference: you have a choice

 Support often means "someone to blame" if something goes
wrong

 Read the license - you can’t blame the vendor
 Applies to open source as well

Comparison

 Cost Comparison

 Approximate cost of a failover configuration capable of 1 gigabit/s:

 Nokia Checkpoint		EUR 35,000
 Cisco Pix (no ’fail-back’)	EUR 40,000
 "Support" and software updates extra!

 OpenBSD & PF (Hardware & CDs)	EUR 6,000

 Conclusion

 PF does one thing - packet filtering - and does it right:
 Secure
 Maintainable
 Flexible
 Easy to use
 Fast

 And as an added bonus:
 Cost competetive

 More information

 OpenBSD manual pages
 PF User’s Guide: http://www.openbsd.org/faq/pf/

 Building Firewalls with OpenBSD and PF [2nd edition] by Jacek
Artymiak

 3rd editon covering OpenBSD 3.7 coming soon, from
O’Reilly

